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Abstract. This chapter describes how we used regression rules to im- 
prove upon results previously published in the Earth science literature. 
In such a scientific application of machine learning, it is crucially impor- 
tant for the learned models to be understandable and communicable. We 
recount how we selected a learning algorithm to maximize communica- 
bility, and then describe two visualization techniques that we developed 
to aid in understanding the model by exploiting the spatial nature of the 
data. We also report how evaluating the learned models across time let 
us discover an error in the data. 

1 Introduction and Motivation 

Many recent applications of machine learning have focused on commercial data, 
often driven by corporate desires to  better predict consumer behavior. Yet sci- 
entific applications of machine learning remain equally important, and they can 
provide technological challenges not present in commercial domains. In particu- 
lar, scientists must be able to communicate their results to  others in the same 
field, which leads them to agree on some common formalism for representing 
knowledge in that field. This need places constraints on the representations and 
learning algorithms that we can utilize in aiding scientists’ understanding of 
data. 

Moreover, some scientific domains have characteristics that introduce both 
challenges and opportunities for researchers in machine learning. For example, 
data from the Earth sciences typically involve variation over both space and 
time, in addition to more standard predictive variables. The spatial character of 
these data suggests the use of visualization in both understanding the discovered 



knowledge and identifying where it falls short. The observations’ temporal nature 
holds opportunities for detecting developmental trends, but it also raises the 
specter of calibration errors, which can occur gradually or when new instruments 
are introduced. 

In this chapter, we explore these general issues by presenting the lessons we 
learned while applying machine learning to a specific Earth science problem: the 
prediction of Normalized Difference Vegetation Index (NDVI) from predictive 
variables like precipitation and temperature. This chapter describes the results 
of a collaboration among two computer scientists (Schwabacher and Langley) 
and three Earth scientists (Potter, Klooster, and Torregrosa). It describes how 
we combined the computer scientists’ knowledge of machine learning with the 
Earth scientists’ domain knowledge to  improve upon a result that Potter had 
previously published in the Earth science literature. 

We begin by reviewing the scientific problem, including the variables and 
data, and proposing regression learning as a natural formulation. After this, we 
discuss our selection of piecewise linear models to represent learned knowledge 
as consistent with existing NDVI models, along with our selection of Quinlan’s 
Cubist (RuleQuest, 2002) to generate them. Next we compare the results we 
obtained in this manner with models from the Earth science literature, showing 
that Cubist produces significantly more accurate models with little increase in 
complexity. 

Although this improved predictive accuracy is good news from an Earth sci- 
ence perspective, we found that the first Cubist models we created were not 
sufficiently understandable or communicable. In our efforts to make the discov- 
ered knowledge understandable to the Earth scientists on our team, we developed 
two novel approaches to visualizing this knowledge spatially, which we report in 
some detail. Moreover, evaluation across different years revealed an error in the 
data, which we have since corrected. 

Having demonstrated the value of Cubist in Earth science by improving upon 
a previously published result, we set out to use Cubist to fit models to data to  
which models had not previously been fit. Doing so produced models that we 
believe to  be very significant. 

We discuss some broader issues that these experiences raise and propose some 
general approaches for dealing with them in other spatial and temporal domains. 
In closing, we also review related work on scientific data analysis in this setting 
and propose directions for future research. 

\ 

2 Monitoring and Analysis of Earth Ecosystem Data 

The latest generation of Earth-observing satellites is producing unprecedented 
amounts and types of data about the Earth’s biosphere. Combined with readings 
from ground sources, these data hold promise for testing existing scientific models 
of the Earth’s biosphere and for improving them. Such enhanced models would 
let us make more accurate predictions about the effect of human activities on 
our planet’s surface and atmosphere. 



One such satellite is the NOAA (National Oceanic and Atmospheric Admin- 
istration) Advanced Very High Resolution Radiometer (AVHRR). This satellite 
has two channels which measure different parts of the electromagnetic spectrum. 
The first channel is in a part of the spectrum where chlorophyll absorbs most of 
the incoming radiation. The second channel is in a part of the spectrum where 
spongy mesophyll leaf structure reflects most of the light. The difference be- 
tween the two channels is used to form the Normalized Difference Vegetation 
Index (NDVI) , which is correlated with various global vegetation parameters. 
Earth scientists have found that NDVI is useful for various kinds of modeling, 
including estimating net ecosystem carbon flux. A limitation of using NDVI in 
such models is that they can only be used for the limited set of years during 
which NDVI values are available from the AVHRR satellite. Climate-based pre- 
diction of NDVI is therefore important for studies of past and future biosphere 
states. 

Potter and Brooks (1998) used multiple linear regression analysis to  model 
maximum annual NDV15 as a function of four climate variables and their loga- 
rithms6 : 

- Annual Moisture Index (AMI): a unitless measure, ranging from -1 to  +1, 
with negative values for relatively dry, and positive values for relatively wet. 
Defined by Willmott & Feddema (1992). 

- Chilling Degree Days (CDD): the sum of the number of days times mean 
monthly temperature, for months when the mean temperature is less than 
0" c. 

- Growing Degree Days (GDD): the sum of the number of days times mean 
monthly temperature, for months when the mean temperature is greater 
than 0" C. 

- Total Annual Precipitation (PPT) 

These climate indexes were calculated from various ground-based sources, 
including the World Surface Station Climatology at the National Center for 
Atmospheric Research. Potter and Brooks interpolated the data, as necessary, 
to put all of the NDVI and climate data into one-degree grids. That is, they 
formed a 360 x 180 grid for each variable, where each grid cell represents one 
degree of latitude and one degree of longitude, so that each grid covers the entire 
Earth. They used data from 1984 to  calibrate their model. Potter and Brooks 
decided, based on their knowledge of Earth science, to  fit NDVI to  these climate 
variables by using a piecewise linear model with two pieces. They split the data 
into two sets of points: the warmer locations (those with GDD 2 3000), and 
the cooler locations (those with GDD < 3000). They then used multiple linear 
regression to fit a different linear model to each set, resulting in the piecewise 
linear model shown in Table 1. They obtained correlation coefficients (r  values) 

They obtained similar results when modeling minimum annual NDVI. We chose to 
use maximum annual NDVI as a starting point for our research, and all of the results 
in this chapter refer to this variable. 
They did not use the logarithm of AMI, since AMI can be negative 
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Table 1. The piecewise linear model from Potter & Brooks (1998) 

Rule I: 
if 

then 
GDD(3000 

ln(NDV1) = 0.715 ln(GDD) + 0.377 ln(PPT) - 0.448 

Rule 2: 
if 

then 
GDD>= 3000 

NDVI = 189.89 AMI + 44.02 ln(PPT1 + 227.99 

of 0.87 on the first set and 0.85 on the second set, which formed the basis of a 
publication in the Earth science literature (Potter & Brooks, 1998). 

3 Problem Formulation and Learning Algorithm 
Selection 

When we began our collaboration, we decided that one of the first things we 
would do would be to try to use machine learning to  improve upon their NDVI 
results. The research team had already formulated this problem as a regression 
task, and in order to preserve communicability, we chose to keep this formula- 
tion, rather than discretizing the data so that we could use a more conventional 
machine learning algorithm. We therefore needed to select a regression learning 
algorithm - that is, one in which the outputs are continuous values, rather than 
discrete classes. 

In selecting a learning algorithm, we were interested not only in improving 
the correlation coefficient, but also in ensuring that the learned models would be 
both understandable by the scientists and communicable to other scientists in the 
field. Since Potter and Brooks’ previously published results involved a piecewise 
linear model that used an inequality constraint on a variable to separate the 
pieces, we felt it would be beneficial to select a learning algorithm that produces 
models of the same form. Fortunately, Potter and Brooks’ model falls within 
the class of models used by Ross Quinlan’s M5 and Cubist machine learning 
systems. M5 (Quinlan, 1992) learns a decision tree, similar to a C4.5 decision 
tree (Quinlan, 1993), but with a linear model at each leaf; the tree thus represents 
a piecewise linear model. Cubist (RuleQuest, 2002) learns a set of rules, similar 
to the rules learned by C4.5rules (Quinlan, 1993), but with a linear model on 
the right-hand side of each rule; the set of rules thus also represents a piecewise 
linear model. Cubist is a commercial product; we selected it over M5 because it is 
a newer system than M5, which, according to Quinlan (personal communication, 
2001), has much better performance than M5. 



Table 2. The effect of Cubist’s minimum rule cover parameter on the number of rules 
in the model and the model’s correlation coefficient. 

MINIMUM RULE COVER NUMBER OF RULES T 

1% 41 0.91 
5% 1 2  0.90 

10% 7 0.89 
15% 4 0.88 
20% 3 0.86 
25% 2 0.85 

100% 1 0.84 

4 First Results 

We ran Cubist (version 1.09) using the same data sets that Potter and Brooks 
had used to  build their model, but instead of making the cuts in the piecewise 
linear model based on knowledge of Earth science, we let Cubist decide where to 
make the cuts based on the data. The results exceeded our expectations. Cubist 
produced a correlation coefficient of 0.91 (using ten-fold cross-validation) , which 
was a substantial improvement over the 0.86 correlation coefficient obtained in 
Potter and Brooks’ earlier work. The Earth scientists on our team were pleased 
with the 0.91 correlation coefficient, but when presented with the 41 rules pro- 
duced by Cubist, they had difficulty interpreting them. Some of the rules clearly 
did not make sense, and were probably a result of Cubist overfitting the data. 
More importantly, the large number of rules - some 41 as compared with two 
in the earlier work - was simply overwhelming. 

The first step we took in response to this understandability problem was to  
change the parameters to Cubist so that it would produce fewer rules. One of 
these parameters specifies the minimum percentage of the training data that 
must be covered by each rule. The default value of 1% produced 41 rules. We 
experimented with different values of this parameter between 1% and 100%; 
the results appear in Table 2 and Figure 1. Using a model with only one rule 
- that is, using conventional multiple linear regression analysis - results in a 
correlation coefficient of 0.84, whereas adding rules gradually improves accuracy. 
Interestingly, when using two rules, Cubist split the data on a different variable 
than the one the Earth scientists selected. Potter and Brooks split the data on 
GDD (essentially temperature), while Cubist instead chose precipitation, which 
produced a very similar correlation coefficient (0.85 versus 0.86). The two-rule 
model produced by Cubist is shown in Table 3. A comparison between Table 1 
and Table 3 reveals that Potter and Brooks modeled ln(NDV1) in one rule, and 
NDVI in the other rule, while Cubist modeled NDVI in both rules. Cubist does 
not have the ability to model the logarithm of the class variable in some rules 
while modeling the original class variable in other rules (there can only be one 
class variable), so the space of rules searched by Cubist did not include Potter 
and Brooks’ model. Interestingly, Cubist produced similar accuracy even though 
it searched a more limited rule space. 
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Fig. 1. The number of rules in the Cubist model and the correlation coefficient for 
several different values of the minimum rule cover parameter. 

Table 3. The two rules produced by Cubist when the minimum rule cover parameter 
is set to 25%. 

Rule 1: 
if 

then 
PPT <= 25.457 

NDVI = -3.22 + 7.07 PPT + 0.0521 CDD - 84 AMI + 0 . 4  ln(PPT) + 0.0001 GDD 

Rule 2: 
if 

then 
PPT > 25.457 

NDVI = 386.327 + 316 AMI + 0.0294 GDD - 0.99 PPT + 0.2 ln(PPT) 



Fig. 2. Map showing which of the two Cubist rules are active across the globe. 

In machine learning there is frequently a tradeoff between accuracy and un- 
derstandability. In this case, we are able to move along the tradeoff curve by ad- 
justing Cubists’ minimum rule cover parameter. Figure 1 illustrates this tradeoff 
by plotting the number of rules and the correlation coefficient produced by Cu- 
bist for each value of the minimum rule cover parameter in Table 2. We believe 
that generally a model with fewer rules is easier to  understand, so the figure 
essentially plots accuracy against understandability. We used trial and error to  
select values for the minimum rule cover parameter that produced the number 
of rules we wanted for understandability reasons. Based on this experience, We 
concluded that a useful feature for future machine learning algorithms would be 
the ability to  directly specify the maximum number of rules in the model as a 
parameter to the learning algorithm. After reviewing a draft of a conference pa- 
per on our NDVI work (Schwabacher and Langley, 2001), Ross Quinlan decided 
to implement this feature in the next version of Cubist - see Section 7.2. 

5 Visualization of Spatial Models 

Reducing the number of rules in the model by modifying Cubists’ parameters 
made the model more understandable, but to further understand the rules, we 
decided to  plot which ones were active where. We developed special-purpose 
C code, which produced the map in Figure 2. In this figure, the white areas 
represent portions of the globe that were excluded from the model because they 
are covered with water or ice, or because there was insufficient ground-based 
data available. After excluding these areas, we were left with 13,498 points that 
were covered by the model. The light gray areas are the areas in which Rule 1 



Fig. 3. Map showing which of the seven Cubist rules are active across the globe. 

from Table 3 applies (the drier areas), and the dark gray areas are the areas in 
which Rule 2 from Table 3 applies (the wetter areas). 

Figure 3 shows where the various rules in a seven-rule model are active. In 
this figure, the white regions were excluded from the model, as before. The gray 
areas represent regions in which only one rule applies; the seven shades of gray 
correspond to  the seven rules. (We normally use different colors for the different 
rules, but resorted to different shades of gray for this book.) The black areas 
are regions in which more than one rule in the model applied. (In these cases, 
Cubist uses the average of all applicable rules.) The seven rules corresponding 
to this map are shown in the Table 4. 

The Earth scientists on our team found these maps very interesting, because 
one can see many of the Earth’s major topographical and climatic features. The 
maps provide valuable clues as to the scientific significance of each rule. With 
the aid of this visualization, the scientists were better able to understand the 
seven-rule model. Before seeing the map, the scientists had difficulty interpret- 
ing Rule 7, since its conditions specified that CDD and GDD were both high, 
which appears to specify that the region is both warm and cold. After seeing 
the map showing where Rule 7 is active, they determined that Rule 7 applies in 
the northern boreal forests, which are cold in the winter and fairly warm in the 
summer. The seven-rule model, which is made understandable by this visualiza- 
tion, is almost as accurate as the incomprehensible 41-rule model (see Table 2).  
This type of visualization could be used whenever the learning task involves 
spatial data and the learned model is easily broken up into discrete pieces that 
are applicable in different places, such as rules in Cubist or leaves in a decision 
tree. 



Table 4. The seven rules for NDVI produced by Cubist when the minimum rule cover 
parameter is set to 10%. 

Rule 1: 
if 
CDD <= 16.52 
PPT <= 25.457 

NDVI = 3.48 + 
then 

Rule 2: 
if 
COD > 16.52 
PPT <= 25.457 

NDVI = -69.99 
then 

Rule 3: 
if 

7.17 PPT - 161 AMI - 0,0082 GOD - 9.9 ln(PPT) + 0.0003 CDD 

+ 16.08 PPT - 0.0449 GDD - 263 AMI + 0.0352 CDD + 0.4 ln(PPT) 

AMI <=z -0.09032081 
PPT > 25.457 

NDVI = 375.9 + 367 AMI + 0.0257 GDD - 0.01 PPT + 0.2 Ln(PPT) 
then 

Rule 4: 
if 
GDD C= 1395.62 
PPT > 25.457 

NDVI = 267.3 + 0.12 GDD + 0.0036 CDD + 3 AMI - 0.01 PPT + 0.2 ln(PPT) 
then 

Rule 5: 
if 
AMI > -0.09032081 
GDD > 5919.36 

NDVI = 601.1 - 0.0063 GOD 
then 

0.11 PPT + 3 AMI + 0.2 ln(PPT) + 0.0001 CDD 

Rule 6: 
if 
AMI > -0.09032081 
CDD <= 908.73 
GDD > 1395.62 
GDD <= 5919.36 

NDVI = 359.8 + 317 AMI + 0.037 GOD + 0.0425 CDD 
then 

1 PPT + 0.2 ln(PPT) 

Rule 7: 
if 
AMI > -0.09032081 
CDD > 908.73 
GDD > 1395.62 

NDVI = 373.13 + 0.0645 GDD + 249 AMI - 1.32 PPT + 0.0134 CDD + 0.2 ln(PPT) 
then 
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Fig. 4. Map showing the errors of the Cubist prediction of NDVI across the globe. 

A second visualization tool that we developed (also as special-purpose C 
code) shows the error of the Cubist predictions across the globe. In Figure 4, 
white represents either zero error or insufficient data, black represents the largest 
error, and shades of gray represent intermediate error levels. From this map, it 
is possible to  see that the Cubist model has large errors in Alaska and Siberia, 
which is consistent with the belief of the Earth scientists on our team that the 
quality of the data in the polar regions is poor. Such a map can be used to better 
understand the types of places in which the model works well and those in which 
it works poorly. This understanding in turn may suggest ways to improve the 
model, such as including additional attributes in the training data or using a 
different learning algorithm. Such a visualization can be used for any learning 
task that uses spatial data and regression learning. 

6 Discovery of Quantitative Errors in the Data 

Having successfully trained Cubist using data for one year, we set out to see how 
well an NDVI model trained on one year’s data would predict NDVI for another 
year. We thought this exercise would serve two purposes. If we generally found 
transfers across years, that would be good news for Earth scientists, because it 
would let them use the model to obtain reasonably accurate NDVI values for 
years in which satellite-based measurements of NDVI are not available. On the 
other hand, if the model learned from one year’s data transferred well to some 
years but not others, that would indicate some change in the world’s ecosystem 
across those years. Such a finding could lead to  clues about temporal phenomena 
in Earth science such as El Niiios or global warming. 



Table 5.  Correlation coefficients obtained when cross-validating using one year’s data 
and when training on one year’s data and testing on the next year’s data, using the 
original data set and using the corrected data set. 

DATA SET 
CROSS-VALIDATE 1983 
CROSS-VALIDATE 1984 
CROSS-VALIDATE 1985 
CROSS-VALIDATE 1986 
CROSS-VALIDATE 1987 
CROSS-VALIDATE 1988 
TRAIN 1983, TEST 1984 
TRAIN 1984, TEST 1985 
TRAIN 1985, TEST 1986 
TRAIN 1986, TEST 1987 
TRAIN 1987, TEST 1988 

T ,  ORIGINAL r ,  CORRECTED 
0.97 0.91 
0.97 0.91 
0.92 0.92 
0.92 0.92 
0.91 0.91 
0.91 0.91 
0.97 0.91 
0.80 0.91 
0.91 0.91 
0.91 0.91 
0.90 0.90 

What we found, to our surprise, is that the model trained on 1983 data 
worked very well when tested on the 1984 data, and that the model trained on 
1985 data worked very well on data from 1986, 1987, and 1988, but that the 
model trained on 1984 data performed poorly when tested on 1985 data. The 
second column of Table 5 shows the tenfold cross-validated correlation coeffi- 
cients for each year, as well as the correlation coefficients obtained when testing 
each year’s model on the next year’s data. Clearly, something changed between 
1984 and 1985. At first we thought this change might have been caused by the 
El Niiio that occurred during that period. 

Further light was cast on the nature of the change by examining the scatter 
plots that Cubist produces. In Figure 5 ,  the graph on the left plots predicted 
NDVI against actual NDVI for the 1985 cross-validation run. The points are 
clustered around the 2 = y line, indicating a good fit. The graph on the right 
plots predicted against actual NDVI when using 1985 data  to  test the model 
learned from 1984 data. In this graph, the  points are again clearly clustered 
around a line, but one that has been shifted away from the 2 = y equation. This 
shift is so sudden and dramatic that the Earth scientists on our team believed 
that it could not have been caused by a natural phenomenon, but rather that it 
must be due to problems with the data. 

Further investigation revealed that there was in fact an error in the data. 
In the data set given to to us, a recalibration that should have been applied 
to the 1983 and 1984 data had not been done. We obtained a corrected data 
set and repeated each of the Cubist runs from Table 5, obtaining the results in 
the third c01umn.~ With the corrected data set, the model from any one year 
transfers very well to  the other years, so these models should be useful to  Earth 

All of the results presented in the previous sections are based on the corrected data 
set. 
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Fig. 5 .  Predicted NDVI against actual NDVI for (left) cross-validated 1985 data and 
(right) training on 1984 data and testing on 1985 data. 

scientists in order to provide NDVI values for years in which no satellite-based 
measurements of NDVI are available. 

Our experience in finding this error in the data suggests a general method 
of searching for calibration errors in time-series data, even when no model of 
the data is available. This method involves learning a model from the data for 
each time step and then testing this model on data from successive time steps. 
If there exist situations in which the model fits the data unusually poorly, then 
those are good places to look for calibration errors in the data. Of course, when 
such situations are found, the human experts must examine the relevant data 
to determine, based on their domain knowledge, whether the sudden change in 
the model results from an error in the data, from a known discontinuity in the 
natural system being modeled, or from a genuinely new scientific discovery. This 
idea can be extended beyond time-series problems to any data set that can be 
naturally divided into distinct sets, including spatial data. 

7 New Data Sets 

7.1 Using other variables to predict NDVI 

Having demonstrated the value of Cubist to Earth science by improving upon 
a previously published result, we set out to use Cubist to fit models to data 
to which models had not previously been fit. First, we tried using additional 
variables to predict NDVI, beyond the four variables that were used in Potter 
and Brooks (1998). The additional variables we tried were: 
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- Potential Evapotranspiration (PET): potential loss of water from the soil 
both by evaporation and by transpiration from the plants growing thereon. 
Defined by Thornthwaite (1948). 

- Elevation (DEM) 
- Percentage wetland (WETLND) 
- HET2SOLU: a 2-dimensional measure of heterogeneity that counts the num- 

ber of different combinations of soil and landuse polygons within each grid 
cell. 

- HET3SOLU: a 3-dimensional measure of heterogeneity that takes elevation 
into account. 

- Vegetation type according to the University of Maryland (UMDVEG) 
- Vegetation type according to the CASA model (CASAVEG) 

We found that the variable that produced the largest improvement in ac- 
curacy when used together with the original four variables was UMDVEG. In- 
cluding UMDVEG together with the original four variables increased the cross- 
validated correlation coefficient (with a minimum rule cover of 1%) from 0.91 to 
0.94. Further investigation of this variable, however, revealed that it was derived 
from NDVI, so that using it to predict NDVI would not be useful. 

We found that including PET, DEM, WETLND, and HET2SOLU (along 
with the original four variables) increased the cross-validated correlation coef- 
ficient (using a minimum rule cover of 1%) from 0.91 to  0.93. This model has 
40 rules, and is very difficult to understand. Increasing the minimum rule cover 
parameter to 10% produced a model with seven rules and a cross-validated cor- 
relation coefficient 0.90. This model is slightly more accurate than the model 
produced from the original four variables (which had a cross-validated correla- 
tion coefficient of 0.89) and is somewhat harder to  understand. 

We concluded that the four variables chosen by Potter and Brooks (1998) 
appear to be a good choice of variables for building a model that is both accurate 
and understandable. In applications for which accuracy is inore important than 
understandability, it may be better to  use the model with eight variables and 40 
rules. 

7.2 Predicting NPP 

We decided to try using Cubist to predict another measure of vegetation: Net 
photosynthetic accumulation of carbon by plants, also known as net primary 
production (NPP). While NDVI is used as an indicator of the type of vegetation 
at different places, NPP is a measure of the rate of vegetation growth. It is 
usually reported in grams of carbon per square meter per year. 

NPP provides the energy that drives most biotic processes on Earth. The 
controls over NPP are an issue of central relevance to human society, mainly 
because of concerns about the extent to which NPP in managed ecosystems can 
provide adequate food and fiber for an exponentially growing population. In 
addition, accounting of the long-term storage potential in ecosystems of atmo- 
spheric carbon dioxide (CO2) from industrial pollution sources begins with an 
understanding of major climate controls on NPP. 



NPP is measured in two ways. The first method, known as “destructive 
sampling,” involves harvesting and weighing all of the vegetation in a defined 
area, and estimating the age of the vegetation using techniques such as counting 
the number of rings in the cross-sections of trees. The second method uses towers 
that sample the atmosphere above the vegetation, and estimating NPP from the 
net COz uptake. Both methods are expensive and provide values for only one 
point a t  at time, so until recently NPP values were only available for a small 
number of points on the globe. 

Previous ecological research has shown that surface temperature and precip- 
itation are the strongest controllers of yearly terrestrial NPP at the global scale 
(Lieth 1975; Potter et al., 1999). Lieth (1975) used single linear regression to pre- 
dict NPP from either temperature or precipitation, using a data set containing 
NPP values from only a handful of sites. 

We recently obtained a new, much larger NPP data set from the Ecosystem 
Model-Data Intercomparison (EMDI) project, sponsored by the National Center 
for Ecological Analysis and Synthesis (NCEAS) in the U.S. and the International 
Geosphere Biosphere Program (IGBP). This data set contains NPP values from 
3,855 points across the globe. We decided to try using Cubist to predict NPP 
from the following three variables: 

- annual total precipitation in millimeters, 1961-1990 (PPT) 
- average mean air temperature in degrees centigrade, 1961-1990 (AVGT) 
- biome type, a discreet variable with 12 possible values (BIOME) 

After Ross Quinlan reviewed a draft of a conference paper on our NDVI work 
(Schwabacher and Langley, 2001), he implemented a new feature in Cubist that 
allows the user to directly specify the maximum number of rules, rather than 
having to use trial and error to pick a value of the minimum rule cover parameter 
that will produce the desired number of rules. For the NPP prediction, we used a 
new version of Cubist (version 1.10) that includes this new feature. We specified 
a maximum of five rules. Cubist produced the four rules shown in Table 6, and 
a cross-validated correlation coefficient of 0.98. 

The Earth scientists on our team were very happy with the 0.98 correlation 
coefficient, and felt that the rules generally made sense. They liked the idea 
of having different linear models for different groups of biome types. Initially, 
however, they were surprised that the coefficient on AVGT was negative in three 
of the four rules. After giving it more thought, they came up with a plausible 
explanation of why this coefficient is negative. AVGT is acting mainly as a 
predictor of relatively higher (or lower) heat fluxes that tend to severely dry out 
(or leave moist) the soils and plants, given a similar PPT. This explanation still 
requires further investigation. 

To help understand these four rules, we produced a map showing where the 
rules are active. Initially we produced a map with four colors representing the 
four rules, and black representing multiple rules being active or no rules being 
active (as in Figure 3). The result was a map in which almost all of the land 
area was black, which of course was not useful. It turns out that with this set 



Table 6. The four rules produced by Cubist for predicting NPP. 

Rule 1: 
if 

then 
PPT <= 653 

NPP = 63.8 + 0.49 PPT - 6.5 AVGT 
Rule 2: 

if 

then 
BIOME in {Grassland, Wooded-grassland, Shrubland, ENL-forest-boreal) 

NPP = 94.3 + 0.418 PPT - 7.3 AVGT 

Rule 3: 
if 

then 
BIOME in {Forest-temperate, Forest-boreal, Forest-xeric) 

NPP = 215.1 + 0.377 PPT - 2.4 AVGT 

Rule 4: 
if 
BIOME in {Savanna, EBL-forest-tropical, Forest-tropical, 

DBL-f orest-tropical) 
then 
NPP = 115.4 + 29.1 AVGT + 0.056 PPT 

Fig. 6. Map showing which combinations of the four Cubist rules for NPP are active 
across the globe. 



of rules, for much of the land area, two rules are active. Since there are only 
four rules, and the last three are mutually exclusive, we were able to assign a 
different color to  each of the eight possible combinations of rules. Also, the 3,855 
points in our NPP data are from 12 biome types, while approximately 48% of 
the world’s land area has biome types other than these 12, resulting in no rule 
being active. Most of these points are tundra, desert, or cultivated land, which 
are biome types for which NPP has not been measured. We assigned a ninth 
color to  represent these areas. In addition, the global data set and the NPP 
data set use two different sets of discrete values for biome type. Some of the 
biome types in the global data set map into more than one biome type in the 
NPP data set, and in some cases these multiple biome types appear in multiple 
Cubist rules, making it unclear which Cubist rules are active. These ambiguous 
points account for approximately 17% of the world’s land area; we assigned a 
tenth color to these points. The resulting map (translated into shades of gray for 
this book) is shown in Figure 6. The black areas in this map are the ambiguous 
points. 

The Earth scientists on our team felt that this map was useful in understand- 
ing the rules, and in understanding the coverage of the model. It showed them 
that the current EMDI data set of measured NPP values allows for a somewhat 
limited extrapolation of the Cubist model (with no deserts, tundra, or cultivated 
areas), but that the extrapolation still covers a substantial portion of the global 
land surface, and that it covers most of the naturally “green” areas. 

8 Related Work 

Robust algorithms for flexible regression have been available for some time. 
Breiman, Friedman, Olshen, and Stone’s (1984) CART first introduced the no- 
tion of inducing regression trees to predict numeric attributes. CART trees have 
a numeric constant at each leaf, yielding a piecewise constant model. Weiss and 
Indurkhya (1993) extended the idea to rule induction, inducing a set of rules 
where the right-hand side of each rule has a numeric constant. Quinlan ex- 
tended the idea to  piecewise linear models, by putting a linear model at each 
leaf of a decision tree in M5 (Quinlan, 1992) or on the right-hand side of each of 
a set of rules in Cubist (RuleQuest, 2002). Each approach has proved successful 
in many domains, and both CART and Cubist have achieved commercial suc- 
cess. However, neither approach has yet seen much application to Earth science 
data, despite the considerable work on classification learning for tasks like as- 
signing ground cover types to pixels (e.g., Brodley & Friedl, 1999) and clustering 
adjacent pixels into groups (e.g., Ester, Kriegel, Sander, & Xu, 1996). 

The work on communicability and understandability described in this chapter 
builds on previous work in comprehensibility. Our requirement for communica- 
bility is similar to  Michalski’s (1983) “comprehensibility postulate” which states 
that the results of computer induction should be in a form that is syntactically 
and semantically similar to that used by humans experts. A collection of papers 
on comprehensibility can be found in Kodratoff and NQdellec (1995). 



Researchers have also carried out extensive work on techniques for visual- 
izing data and learned knowledge. Tufte (1983) did early influential work on 
the former topic, whereas Keim and Kriegel (1996) review many of the exist- 
ing approaches. Rheingans and desJardins (2000) describe a technique for using 
self-organizing maps to display high-dimensional data, predictions, and errors in 
two dimensions. Within the data-mining community, researchers have developed 
a variety of methods for the graphical display of learned knowledge (e.g., Brunk, 
Kelly, & Kohavi, 1996). However, although much of this work employs a spatial 
metaphor, little has focused on learned spatial knowledge itself. 

Applications of machine learning to Earth science data, as in methods for 
ground cover prediction (e.g., Brodley & Fkiedl, 1999), regularly display classes 
on maps. Smyth, Ghil, and Ide (1999) plot predictions of a learned mixture 
model on the globe, but our approach to  visualizing areas in which regression 
rules match, as well as anomalous regions, appears novel. 

The European project SPIN! (2002) is seeking to develop a spatial data 
mining system by combining data mining tools like C4.5 (Quinlan, 1993) with 
tools for visualizing spatial data like Descartes (Andrienko & Andrienko, 1999). 
The planned system will let its users visualize geographically-referenced data 
on maps, and mine the data using the data-mining tools, from a unified user 
interface. The researchers plan to test the SPIN! system on applications involving 
seismic and volcano data. The visualization component of the project seems 
focused on letting users visualize the data, rather than visualizing the knowledge 
learned through data mining. 

There has also been considerable research on using machine-learned knowl- 
edge to  detect and either ignore or correct errors in training data. Much of this 
work has focused on removing cases with faulty class labels (e.g., John, 1995; 
Brodley & Fkiedl, 1999), but some has addressed detecting errors in the values of 
predictive variables. GritBot, a product of Quinlan’s RuleQuest Research (2002), 
detects both errors in the class labels and errors in the predictive values by find- 
ing what it calls anomalies: items in the training data that are outliers. We ran 
GritBot on both the NDVI and the NPP data sets, and it found a number of 
anomalies. For example, it found a point that had the unusual combination of 
a high maximum NDVI and a low minimum NDVI. All of the anomalies that 
GritBot finds are single-point anomalies - each anomaly is one item in the 
training data, which in the applications described in this chapter means that 
it is a single point on the globe at a single point in time - so GritBot is not 
capable of finding the type of systematic error that we describe in Section 6 .  
Naturally, there are established methods for detecting and correcting calibra- 
tion problems in remote-sensing systems (e.g., Chen, 1997), but these rely on 
predefined models. Thus, our use of regression rules to detect systematic errors 
appears novel to both the machine learning and calibration communities. 



9 Future Work 

Our collaboration is in its early stages, and we still have many research avenues 
to  explore. Our next step in modeling NDVI will incorporate time explicitly by 
adding the year to the continuous variables used in regression equations, rather 
than building a separate model for each year. We hope that by examining the 
resulting multi-year models, we can learn something about climate change over 
time. 

In this chapter, we have assumed that models with fewer rules are more 
understandable. In future work, we plan to test this assumption by having the 
Earth scientists on our team examine various sets of rules that Cubist produces 
for different parameter values and telling us which sets they think are easier to 
understand. Naturally, we will also ask them to judge the rules’ plausibility and 
interestingness from the perspective of Earth science. 

Another direction for future work is to develop an extension to  the Cubist 
algorithm that would allow it to take advantage of background knowledge. One 
possible form of background knowledge would be knowledge of the sign of the 
coefficients on some of the variables within the linear models. For example, we 
believe that the coefficient on PPT in the NPP model should always be positive. 
Pazzani and Bay (1999) describe an algorithm that uses knowledge of the signs 
of the coefficients to constrain the construction of regression equations. Their 
algorithm accepts input about the sign of each term, then use an optimization 
method to find the best weights given the constraints. The resulting equations 
were just as accurate as the unconstrained linear models on separate test sets, 
and domain experts found them more comprehensible. It would be interesting 
to  combine Pazzani and Bay’s algorithm with the Cubist algorithm to produce 
decision rules with linear models that obey sign constraints. 

The NDVI predictive model is only one piece of a larger framework, known as 
CASA (Potter & Klooster, 1998), that Potter’s team has developed to model the 
Earth’s ecosystem. CASA takes the form of a process model, stated in terms of 
differential equations, for the production and absorption of biogenic trace gases 
in the Earth’s atmosphere. CASA’s output is NPP. We have achieved very good 
accuracy by using Cubist to predict NPP, but for the reasons of understandability 
and communicability described earlier, we would like our learned models to take 
the same form as the CASA model, which means we cannot rely on Cubist alone 
in our future efforts. 

There has been some research on discovering laws that take the form of 
differential equations (Todorovski & Dzeroski, 1997), but this work has not used 
an existing set of equations as the starting point. We plan to  develop an algorithm 
that will begin with the current CASA model and search through the space of 
possible equations to find an improved model. We will consider developing a 
Cubist-like algorithm that learns a model with a set of rules to select among 
different sets of differential equations (instead of different linear models). We 
hope that this effort will improve the accuracy of the CASA model to  the point 
where it is as accurate as the Cubist model of NPP, while retaining CASA’s 
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communicability and its scientific plausibility. We also hope that the changes 
our system makes to  the model will suggest new insights about Earth science. 

10 Lessons Learned 

In their editorial on applied research in machine learning, Provost and Kohavi 
(1998) claimed that a good application paper will “focus research on important 
unsolved problems that currently restrict the practical applicability of machine 
learning methods.” In this chapter, we have identified, and provided initial so- 
lutions for, three such problems that arise in scientific applications: 

Communicability. In scientific domains, it is important for the form of the 
learned models to match the form that is customarily used in the relevant 
literature, so that the learned models can be communicated to other scien- 
tists. 

Understandability. In domains that involve spatial data, understanding of the 
models can be increased by visualizing the spatial distribution of the model’s 
errors and visualizing the locations in which the model’s components (e.g., 
rules) are active. Adjusting the parameters to the learning algorithm in order 
to produce a smaller model can also aid understandability. 

Quantitative errors. In applications that involve time-series numerical data, 
machine learning methods can be used to  identify quantitative errors by 
testing a learned model for one time period against data from other time 
periods. 

Although we have developed these ideas in the context of a specific scien- 
tific application - the prediction of NDVI and NPP from climate variables - we 
believe they have general applicability to any domain that involves scientific un- 
derstanding of spatio-temporal data. As we continue utilizing machine learning 
to improve the CASA model, we expect that the challenging nature of the task 
will reveal other methods and principles that contribute to  both Earth science 
and the science of machine learning. 
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